Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods
نویسندگان
چکیده
منابع مشابه
High Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD
In recent years high order numerical methods have been widely used in computational uid dynamics (CFD), to e ectively resolve complex ow features using meshes which are reasonable for today's computers. In this paper we review and compare three types of high order methods being used in CFD, namely the weighted essentially non-oscillatory (WENO) nite di erence methods, the WENO nite volume metho...
متن کاملParallel Iterative Discontinuous Galerkin Finite-element Methods
We compare an iterative asynchronous parallel algorithm for the solution of partial diierential equations, with a synchronous algorithm , in terms of termination detection schemes and performance. Both algorithms are based on discontinuous Galerkin nite-element methods, in which the local elements provide a natural decomposition of the problem into computationally-independent sets. We demonstra...
متن کاملPoint-wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws
We develop a new hierarchical reconstruction (HR) method [17, 28] for limiting solutions of the discontinuous Galerkin and finite volume methods up to fourth order of accuracy without local characteristic decomposition for solving hyperbolic nonlinear conservation laws on triangular meshes. The new HR utilizes a set of point values when evaluating polynomials and remainders on neighboring cells...
متن کاملFinite Difference and Discontinuous Galerkin Methods for Wave Equations
Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...
متن کاملStabilization Mechanisms in Discontinuous Galerkin Finite Element Methods
In this paper we propose a new general framework for the construction and the analysis of Discontinuous Galerkin (DG) methods which reveals a basic mechanism, responsible for certain distinctive stability properties of DG methods. We show that this mechanism is common to apparently unrelated stabilizations, including jump penalty, upwinding, and Hughes–Franca type residual-based stabilizations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2018
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.06.008